Plastics for thousands of applications & Superior technical support

FOUR DECADES OF DEDICATION TO PROVIDING SOLUTIONS FOR OUR CUSTOMERS

Interstate Advanced Materials proudly offers solutions for many diverse industries including semiconductor, medical, aerospace, food processing, POP display, government, and automotive to name a few. Finding the right materials for our customers is the very foundation of Interstate Advanced Materials and has been since our founding in 1980. We’re always a phone call away and here to provide your performance material solutions.

MORE THAN MATERIALS
We help with more than just materials. Shop our wide variety of our accessories items for cutting, cleaning, and care.

CONVENIENT PURCHASING
Online at www.interstateam.com or by phone, Interstate Advanced Materials is always a phone call or click away.

Call Now: (916) 422-3110

330 Commerce Circle
Sacramento CA, 95815
Phone: (916) 422-3110
Material Characteristics

<table>
<thead>
<tr>
<th>Material</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetal</td>
<td>Good formability with a wide softening temperature range. Good tensile, compressive, and impact strength. Machineability excellent. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
<tr>
<td>Delrin® AF Blend</td>
<td>Excellent bearing and wear resistance.橋接 strength in highly abrasive and erosive environments. Good formability with a wide softening temperature range. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
<tr>
<td>Delrin® AF-100</td>
<td>Excellent bearing and wear resistance. Good formability with a wide softening temperature range. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
<tr>
<td>Delrin® AF-13%</td>
<td>Excellent bearing and wear resistance. Good formability with a wide softening temperature range. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
<tr>
<td>PTFE</td>
<td>Good formability with a wide softening temperature range. Good tensile, compressive, and impact strength. Machineability excellent. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
<tr>
<td>PTFE Copolymer</td>
<td>Good formability with a wide softening temperature range. Good tensile, compressive, and impact strength. Machineability excellent. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
<tr>
<td>PTFE Terpolymer</td>
<td>Good formability with a wide softening temperature range. Good tensile, compressive, and impact strength. Machineability excellent. Can be easily turned, drilled, milled, sawed, and die-cut.</td>
</tr>
</tbody>
</table>

Friction Coefficient

<table>
<thead>
<tr>
<th>Coefficient of Friction</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Cost

<table>
<thead>
<tr>
<th>Cost</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>$2.50</td>
<td>$2.50</td>
<td>$2.50</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>$2.50</td>
<td>$2.50</td>
<td>$2.50</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>$2.50</td>
<td>$2.50</td>
<td>$2.50</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>$2.50</td>
<td>$2.50</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

Temperature Range

<table>
<thead>
<tr>
<th>Maximum Service Temperature</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
</tr>
</tbody>
</table>

Tensile Strength

<table>
<thead>
<tr>
<th>Tensile Strength</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>2000 psi</td>
<td>2000 psi</td>
<td>2000 psi</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>2000 psi</td>
<td>2000 psi</td>
<td>2000 psi</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>2000 psi</td>
<td>2000 psi</td>
<td>2000 psi</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>2000 psi</td>
<td>2000 psi</td>
<td>2000 psi</td>
</tr>
</tbody>
</table>

Impact Strength

<table>
<thead>
<tr>
<th>Impact Strength</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
<td>100 ft-lb</td>
</tr>
</tbody>
</table>

Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
<td>0.91 g/cm³</td>
</tr>
</tbody>
</table>

Thermosets

<table>
<thead>
<tr>
<th>Thermosets</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-10</td>
<td>Good dielectric and thermal performance. Ideal for high-frequency applications.</td>
</tr>
<tr>
<td>G-10/FR4</td>
<td>Glass reinforced epoxy. Excellent dielectric and thermal properties.</td>
</tr>
<tr>
<td>Epoxy Resin</td>
<td>Excellent dielectric and thermal properties.</td>
</tr>
</tbody>
</table>

Corrosion Resistance

<table>
<thead>
<tr>
<th>Corrosion Resistance</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Delrin® AF Blend – 13%</th>
<th>Delrin® AF-100</th>
<th>Delrin® AF-13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Gum Stock</td>
<td>Industrial</td>
<td>Industrial</td>
<td>Industrial</td>
</tr>
<tr>
<td>(B) Delrin® AF Blend</td>
<td>Industrial</td>
<td>Industrial</td>
<td>Industrial</td>
</tr>
<tr>
<td>(C) Delrin® AF-100</td>
<td>Industrial</td>
<td>Industrial</td>
<td>Industrial</td>
</tr>
<tr>
<td>(D) Delrin® AF-13%</td>
<td>Industrial</td>
<td>Industrial</td>
<td>Industrial</td>
</tr>
</tbody>
</table>
Fluoropolymer Materials

Polypropylene
- Resists most acids, alkalis, and solvents
- Copolymer provides outstanding toughness
- Air welded, and machined
- Thermoformed, fabricated, hot
- High strength, chemical,
- Lightweight thermoplastic with
- Applicaions
- Easy to machine and fabricate
- Extreme corrosion, chemical,
- Durability.
- And long term
- Thermoplastic with a high
- Strength to-density ratio
- And long-term
durability.

HDPE
- HDPE (high-density polyethylene) is a lightweight machinable thermoplastic with a high strength-to-density ratio and long-term durability.
- Extreme corrosion, chemical, and wear resistance.
- Easy to machine and fabricate.
- FDA and USDA compliant for food processing applications.

LDPE
- LDPE (low-density polyethylene) is characterized by its great chemical resistance and desirable electrical properties at a cost-effective price point.
- Cost Effective.
- Desirable chemical and corrosion resistance.
- High impact strength at low temperatures.

Fluorocarbon-Based

PTFE
- PTFE (polytetrafluoroethylene) is an outstanding choice for high abrasion, impact, and chemical resistance at a relatively low cost.
- Easy to fabricate and machine.
- Highly resistant to wear and abrasion.
- Extremely low moisture absorption.
- Low coefficient of friction.

PVDF
- PVDF combines typical fluoropolymer properties, with the mechanical properties of more rigid thermoplastics.
- Non-toxic, high purity, and high heat deflection temperature.
- High UV and gamma radiation resistance.
- Ideal for semi-conductor processing, chemical processing, and heat exchangers.

PVDF – 25% Glass Blend
- PTFE with the addition of glass fibers has very little effect on chemical and electrical properties while greatly adding to the mechanical properties of unfilled PTFE and significantly increasing wear resistance.
- Higher mechanical properties versus unfilled PTFE.
- High heat and chemical resistance.
- Other blends available.

ECTFE
- ECTFE (a copolymer of ethylene and chlorotrifluoroethylene) offers excellent resistance to abrasion, harsh chemicals, and permeation. For those applications exceeding the capabilities of PVDF, ECTFE can be evaluated before resorting to a fully fluorinated polymer.
- Desirable resistance to abrasion, harsh chemicals, and permeation.
- Easier to fabricate than most fluoroplastics.
- Ideal for wire and cable insulation.

FEP
- FEP is a relatively soft plastic with lower wear and creep resistance versus many other engineering plastics. Its disadvantage is being chemically inert with a low dielectric constant over a wide frequency range.
- High stress cracking resistance.
- Low coefficient of friction.
- Desirable dielectric properties and heat resistance.

ETFE
- ETFE (ethylene tetrafluoroethylene) offers excellent resistance to abrasion, harsh chemicals, and permeation. It features great electrical and thermal insulation.
- Operates in environments from -300°F to 380°F.
- Works well for chemical vessel lining applications and wire/cable insulation.
- Extremely high purity.

Fluorosint® 500 PTFE
- Fluorosint® 500 PTFE has nine times the resistance to deformation under load versus unfilled PTFE. It is 30% harder than unreinforced PTFE, and features better wear characteristics while maintaining low frictional properties.
- Reliable performance in hostile chemical environments.
- Ideal for high-pressure seals and wear parts.
- Highly resistant to deformation under load.

PVDF – 350 PTFE
- PFA is a high-performance fluoropolymer that exhibits similar characteristics to PTFE. It is melt-processable and performs extremely well in extreme heat and chemically corrosive environments.
- Chemically inert to nearly all industrial chemicals and solvents.
- USDA and FDA compliant CFR-177.1550 (excluding PFA 350).

UHMW-PE
- UHMW-PE (Ultra High Molecular Weight Polyethylene) offers exceptional resistance to abrasion, harsh chemicals, and wear resistance. It is commonly used for cryogenic and chemical processing components, as well as laboratory instruments.
- Wide temperature operating range of approximately -400°F to 380°F.
- Very low gas permeation and outgassing.
- High compressive strength with low deformation.

PTFE – Virgin Molded Grade
- PTFE (polytetrafluoroethylene) offers exceptional resistance to abrasion, harsh chemicals, and mechanical strength over a wide temperature range. It features great electrical and thermal insulation.
- Operates in environments from -300°F to 380°F.
- Works well for chemical vessel lining applications and wire/cable insulation.
- Extremely high purity.

PVDF
- PVDF is a high-performance fluoropolymer that exhibits similar characteristics to PTFE. It is melt-processable and performs extremely well in extreme heat and chemically corrosive environments.
- Chemically inert to nearly all industrial chemicals and solvents.
- USDA and FDA compliant CFR-177.1550 (excluding PFA 350).

PVDF – Virgin Molded Grade
- PVDF (polyvinylidene fluoride) offers exceptional resistance to abrasion, harsh chemicals, and permeation. It features great electrical and thermal insulation.
- Operates in environments from -300°F to 380°F.
- Works well for chemical vessel lining applications and wire/cable insulation.
- Extremely high purity.

Fluorosint® 500 PTFE
- Fluorosint® 500 PTFE has nine times the resistance to deformation under load versus unfilled PTFE. It is 30% harder than unreinforced PTFE, and features better wear characteristics while maintaining low frictional properties.
- Reliable performance in hostile chemical environments.
- Ideal for high-pressure seals and wear parts.
- Highly resistant to deformation under load.

Fluorosint® 500 PTFE
- Fluorosint® 500 PTFE has nine times the resistance to deformation under load versus unfilled PTFE. It is 30% harder than unreinforced PTFE, and features better wear characteristics while maintaining low frictional properties.
- Reliable performance in hostile chemical environments.
- Ideal for high-pressure seals and wear parts.
- Highly resistant to deformation under load.
High Performance Engineering Plastics

Torlon® 4301 PAI
Torlon® 4301 exhibits excellent wear resistance in bearing grades and is able to endure harsh thermal, chemical, and stress conditions. It has superior resistance to elevated temperatures, capable of performing under severe stress conditions at continuous temperatures of up to 500°F:
• Exceptional toughness, stiffness, and strength
• Excellent heat temperature resistance
• Wear and creep resistant

Noryl® – EN 265
Noryl® is a strong thermoplastic with outstanding strength, stiffness, mechanical, thermal, and electrical properties. Low moisture absorption and low thermal expansion make Noryl one of the most dimensionally stable thermoplastics available:
• Excellent dimensional stability in a wide range of service temperatures
• High impact resistance and dielectric strength
• Excellent flammability rating

Ultem® 1000 PEI Polyetherimide
Ultem® polyetherimide (PEI) offers outstanding elevated thermal resistance as well as high strength, stiffness, rigidity and creep resistance. Ultem® is commonly used in the medical field due to its heat and radiation resistance, hydrolytic stability, and transparency:
• High tensile and dielectric strength
• Flame resistant even at extreme temperatures
• Excellent dimensional and hydrolytic stability

PEEK – Virgin Grade
PEEK is a stiff thermoplastic material with exceptional chemical and fatigue resistance, and thermal stability. It is often used in applications where performance at extreme temperatures is necessary:
• Extreme chemical resistance with good mechanical properties
• Highly resistant to thermal degradation
• Excellent strength, stiffness, and dimensional stability

Torlon® 4203 PAI
Torlon® 4203 extruded PAI offers impressive compressive strength and extremely high elongation at break. With great electrical insulation and exceptional impact strength, Torlon® 4203 is commonly used for electrical connectors and insulators:
• High dielectric strength
• Superior resistance at high temperatures
• Performs under severe stress conditions

Ertalyte® TX PET
Ertalyte® TX is an internally lubricated mechanical thermoplastic that provides enhanced wear and creep resistance versus nylon and aromatic products with lower wear and friction versus unmodified polycyans:
• FDA, USDA and 3A Dairy compliance
• Desirable wear, friction, chemical, and creep resistance
• Reputable Delrin® AF substitute

Ultem® PEI U2300 30% Glass Reinforced
Ultem® PEI U2300 is a 30% Glass Reinforced grade, with even higher rigidity and dimensional stability versus PEI U1000 or Ultem® 1000. The glass reinforcement offers an increased strength to weight ratio and improved tensile strength. PEI is common for medical devices, instrumentation, and electrical insulators:
• 10% and 20% glass reinforced grades available
• More rigid than non-reinforced grades
• Resistant to chemical solutions & daily sanitizing

PEEK – Glass 30%
Glass filled PEEK offers the same exceptional properties of PEEK with enhanced mechanical and thermal properties over standard grades:
• Extremely high thermal and mechanical capabilities
• Very high continuous working temperature
• Very high heat deflection temperature

Torlon® 5530 PAI – Glass 30%
Torlon® 5530 is a compression molded PAI with 30% glass, making it ideal for higher load structural or electronic applications. It is used for larger shapes and parts and is the greatest degree of dimensional control is required:
• High dimensional control
• Great insulation properties
• Ideal for higher load structural or electronic applications

PPS
PPS offers high mechanical performance, and excellent heat and chemical resistance, with service temperatures that range up to 338°F. Excellent hardness, rigidity, dimensional stability, and creep resistance make PPS ideally suited for low tolerance matched components:
• Excellent strength and hardness with a high resistance to chemicals
• Machines to tight tolerances
• PEAK alternative for lower temperature applications

Vespel® Polyimide
Vespel® polyimide is an extremely high temperature, creep resistant material that is often used in high heat environments where thermoplastic materials would lose their mechanical properties. Vespel provides excellent temperature, wear and chemical resistance:
• Ultra low outgassing
• Extremely high wear and heat resistance
• Will not melt under nearly any operating conditions

Laminate Glass Epoxy ESD
Laminate Glass Epoxy ESD is a high strength material that has five times the stiffness of leading thermoplastics. It exhibits excellent dimensional stability, eliminates cracking and chipping, and features a printable surface. Laminate Glass Epoxy ESD is ideal for protecting static-sensitive electronic applications like automated test equipment, assembly fixtures, solder pallets, carrier plates, enclosures, and work surfaces:
• Uniform thickness
• Cost-effective ESD material

Acetal ESD
Ideal for use in applications that give off electrical discharge, static dissipative acetal ESD offers good sliding behavior, low moisture absorption, low creep tendency, and a desirable combination of mechanical strength, stiffness, and impact strength:
• Accepted for clean room use in semiconductor applications
• High surface resistivity
• No carbon black

Semitron® ESD 410C
Semitron® ESD 410C PEI is a static dissipative PEI that has the same general properties of unfilled PEI but with additional static dissipative properties, ideal for use in applications that give off electrical discharge:
• Static dissipative properties do not rely on humidity or surface treatments to activate
• Ideal for environments where wear-resistance, chemical-resistance and the management of static electricity are required
• Very high dimensional stability

UHMW-PE ESD
Anti-static UHMW can move products more safely in potentially volatile environments, such as munitions plants, grain handling facilities, and explosive assembly facilities (e.g. ax-bag assembly) where a spark can cause a dust explosion. Anti-static UHMW protects products sensitive to build-up of electrical charges:
• Resists static buildup
• Extremely high abrasion resistance
• Outstanding impact strength, even at low temperatures

Semitron® ESD 480
Semitron® ESD is thermally stable at temperatures up to 475°F without degradation and offers high structural strength and stiffness combined with excellent electrical stability:
• Excellent chemical resistance
• Static dissipative throughout a wide temperature range
• Retains mechanical properties of PEEK
Medical Grade Plastics

Medical Grade Acetal
Medical grade Acetal is a thermoplastic with high strength and stiffness as well as good dimensional stability for precision machined parts. It features high chemical resistance, especially to alcohols, solvents and fuels.
- Lot controlled and traceable
- Resin complies with FDA regulations 21 CFR 177.2470 and 21 CFR 178.3297 for colorants
- Resin meets the requirements of USP Class VI specifications

Radel® R5000 – PPSU
Medical grade Radel® R5000 resin is offered exceptional hydrolytic stability, toughness and superior impact strength over a wide temperature range. Radel® offers high deflection temperatures and outstanding resistance to environmental stress cracking.
- Lot controlled and traceable
- Resin meets the requirements of USP Class VI and ISO 10993
- Superior dimensional stability

Polypropylene – Heat Stabilized
Polypropylene HS (heat stabilized) is produced from a FDA and USP Class VI approved homopolymer resin, and exhibits better heat and dimensional stability over standard polypropylene.
- Laser markable
- Lot controlled and traceable
- Low moisture absorption
- FDA compliant

UHMW-PE Medical Grade
Medical grade UHMW-PE is produced from premium resins in accordance with ASTM specification F448 and International Standard ISO 12784-1 and ISO 12784-2 for surgical implants. Stringent quality control ensures a consistent and consistent fabricated form. Recommended sterilization techniques include EO gas cold sterilization and limited gamma irradiation.
- Compliant for surgical implants
- Cost effective

PETG
PETG Thermoplastic sheets offer superior impact strength when thermforming. PETG is a versatile thermforming material perfect for countless projects. Using standard tools, PETG sheet can be used for gun holsters, knife sheaths, prototyping, model making, machine housings, molds, and POP displays.
- Extremely rigid of thermforming material
- Effective for pressure forming
- Meets 94 V-0 requirements

Kydex® T
Kydex® plastic features superior formability when thermforming. Kydex® is a versatile thermforming material perfect for countless projects. Using standard tools, Kydex® sheet can be drilled, brake formed or punch pressed. Kydex® can be used for gun holsters, knife sheaths, prototyping, model making, machine housings, molds, and POP displays.
- Extremely rigid of thermforming material
- Effective for pressure forming
- Meets 94 V-0 requirements

ABS – Forming Grade
ABS (acrylonitrile butadiene styrene) forming grade plastics is tough, rigid thermoplastic material with high impact strength. It is easily formed and machined, ideal for structural applications.
- Tough and rigid
- Easily machinable and fabricated
- Wide operating temperature range
- High impact strength, even at low temperatures

Acrylic
Acrylic plastic is extremely transparent and transmits 92 percent of white light. This is equal to the transparency of the finest optical glass. Impact resistant acrylic sheet has six to 17 times the impact resistance of ordinary glass, depending on the specific preparation.
- Lighter and stronger than glass
- Highly transparent
- Easily formed and machined
Acrylic

Acrylic is resistant to long-term sunlight exposure and weathering. It has excellent optical properties and has a much higher impact resistance than glass. Acrylic has low water absorption, good electrical resistivity, and fair tensile strength. It can be routed, drilled, flame polished, and bent into many shapes, perfect for applications including glazing, windows, signage, POP, screens, transparent barriers, signage, and lighting.

Polycarbonate

Polycarbonate is a machinable, cost-effective, generally transparent thermoforming plastic. It is an extremely durable material, lighter than glass and nearly unbreakable. Stronger than acrylic, it has better light transmission than many types of glass. Polycarbonate is safe, shatterproof, lightweight, and available in transparent or translucent colors. Many optional specifications are available including UV resistant and abrasion resistant grades.

Renovo-MPC™ Polycarbonate

Renovo-MPC™ is a clear reclaimed post-consumer, industrial grade polycarbonate. It retains the properties of general purpose extruded polycarbonate, including its outstanding optical clarity, high light transmission, and low haze. Renovo-MPC™ is a closed loop sheet that is lightweight, shatter-resistant, and has a higher impact resistance than glass.

Poly carbonate Twinwall & Multwall

Twinwall and multwall polycarbonate is the ideal glazing solution for many outdoor applications including roofing, hobby and commercial greenhouses, storm panels, and window replacement. Twinwall’s double paneled sheets serve to trap air, increasing insulation strength. It withstands UV rays, hail, and extreme weather and provides the best thermal insulation of any hot/cold aisle containment, greenhouse glazing, storm panel, or agricultural covering solution on the market.

PETG

PETG is durable, lightweight, cost-effective, and allows for simple and flexible fabricating, forming, and finishing. PETG features higher impact resistance than acrylic while remaining cost-effective. Widely used in point of purchase applications, PETG handles deep draws, complex die-cuts, and precise molded-in details without sacrificing its structural integrity.